Why Broccoli And Cabbage Are So Bitter

Why Broccoli And Cabbage Are So Bitter

Researchers have mapped the crystal structure of a key protein that makes the metabolites responsible for the bitter taste in Brassica vegetables like mustards, broccolis, and cabbages.

Vegetables in the genus Brassica share a distinct and bitter taste. Some consider the flavor of cruciferous plants their strongest attribute. But even in India and China, where these “brassicas” have been cultivated for more than 4,000 years, scientists have sought to tone down the chemical compounds responsible for their pungent flavor. Turns out, the same compounds that make them bitter also make them toxic at some levels.

The new study is the first snapshot of how the protein evolved and came to churn out such diverse byproducts in this agriculturally significant group of plants. The results could be used along with ongoing breeding strategies to manipulate crop plants for nutritional and taste benefits.

Brassicas fight back

“All of the brassicas—be it Indian mustard, Arabidopsis, broccoli, or brussel sprouts—they all make these pungent, sulphur-smelling compounds, the glucosinolates,” says Joseph Jez, professor of biology at Washington University in St. Louis. The compounds have long been recognized as a natural defense against pests.


 Get The Latest By Email

Weekly Magazine Daily Inspiration

“Plants need to fight back,” Jez says. “They can’t really do anything, but they can make stuff.”

“There’s different profiles of glucosinolates in different plants,” he says. “The question has always been if you could modify their patterns to make something new. If insects are eating your plants, could you change the profile and get something that could prevent crop loss?”

But there are a daunting number of glucosinolates: almost 130 different kinds recognized within the genus Brassica. Each plant species within the genus makes a “collection” of several different kinds of glucosinolates—its own flavor mix—all of which are secondary metabolites of a particular protein.

Researchers have known about the central role of this protein for decades. But prior to this study, no one had ever been able to complete the x-ray crystallography necessary to map it in detail.

Tastier crops?

The new work, co-led by Roshan Kumar, a postdoctoral fellow in the Jez laboratory, uses genetics, biochemistry, and structural biology to help unravel the molecular basis for the evolution and diversification of glucosinolates.

“Glucosinolates are derived from amino acids,” Kumar says. “Gene elongation is one of the important steps that provides most of the diversity in the glucosinolate profiles across all of the brassicas. It decides which type of glucosinolates (the plant) is going to form.”

The insight gained in the new study is important step toward mustering a milder mustard, or building a bitter-free broccoli.

But will it help us to eat our greens?

Maybe. Mostly researchers are interested in the potential for modifying glucosinolates in seeds, not in the stems or leafy parts of Brassica plants, Kumar says.

The major oilseed crop Brassica juncea and related rapeseeds are used to make cooking oil in temperate and subtropical areas of the world. Plant breeders have sought to adjust the levels of glucosinolates in these crops so that the protein-rich seed cake leftovers can be used as a feed supplement for cattle and poultry.

“If you decrease glucosinolates from all over the plant, it becomes susceptible to pests and pathogens,” Kumar says. “That is why there is a need for smart engineering of glucosinolates.”

The study appears in the journal The Plant Cell. Additional researchers contributing to the work are from the National Institute of Plant Genome Research in New Delhi, India and the the Max Planck Institute for Chemical Ecology in Jena, Germany.

Source: Washington University in St. Louis

books_food

AVAILABLE LANGUAGES

English Afrikaans Arabic Chinese (Simplified) Chinese (Traditional) Danish Dutch Filipino Finnish French German Greek Hebrew Hindi Hungarian Indonesian Italian Japanese Korean Malay Norwegian Persian Polish Portuguese Romanian Russian Spanish Swahili Swedish Thai Turkish Ukrainian Urdu Vietnamese

follow InnerSelf on

facebook icontwitter iconyoutube iconinstagram iconpintrest iconrss icon

 Get The Latest By Email

Weekly Magazine Daily Inspiration

Wednesday, 28 April 2021 08:51

Insects are attracted to landscapes where flowering plants of the same species are grouped together and create big blocks of color, according to new research.

Monday, 24 May 2021 08:28

There are many valid theories to explain the global appeal of cats, including our obsession with watching videos of them online. In terms of cats’ pure entertainment value, however, our...

Friday, 14 May 2021 08:30

Fertility has declined in most industrialised countries. While the causes are largely unknown, a number of factors may contribute to declining fertility rates, including the age...

Thursday, 15 April 2021 07:10

Blooming flowers, chirping birds and long-awaited rays of sunshine: The first signs of spring are often greeted with joy. But soon comes the realization that with warm weather comes ticks. 

Thursday, 01 April 2021 16:24

  Flamenco dancing is a delight to watch. A good flamenco dancer exudes an exuberant self-confidence that we, the audience, absorb. The whole dance has a quality of proud self-assurance and...

Thursday, 06 May 2021 00:51

Have you ever walked into an empty room and immediately sensed that the atmosphere was laced with tension? You may have had no idea what occurred there prior to your arrival, yet you somehow knew...

New Attitudes - New Possibilities

InnerSelf.comClimateImpactNews.com | InnerPower.net
MightyNatural.com | WholisticPolitics.com | InnerSelf Market
Copyright ©1985 - 2021 InnerSelf Publications. All Rights Reserved.